

Manual Grating-Based Fiber Optic Tunable Filter

(patent pending)

Product Description

Agiltron's Manual Grating-Based Fiber Optic Tunable Filter provides a simple way to adjust the center wavelength of narrow band over wide band. Wavelength tuning is achieved by rotating a grating using a micrometer.

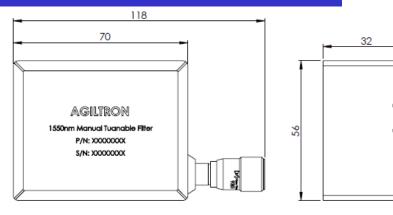
Based on a proprietary optics, Agiltron offers extremely low insertion loss, high stability, polarization independent operation, and high off-band suppression. It is tunable continuously over a wide spectral range. The device presents a most cost-effective solution for OEM applications from fiber optic networks to fiber sensing interrogation.

Performance Specifications

Parameter		Min	Typical	Max	Unit
Wavelength Tuning Range		1060±15	1500±20	2000±20	nm
Tuning Resolution		-	0.02	-	nm
	B-Grade	1.1	2.1	2.5	dB
Insertion Loss*	A-Grade 1.1	1.1	1.6	1.8	dB
Bandwidth @-3dB		-	0.25	-	nm
Bandwidth @-20dB		- 0.75		-	nm
Polarization Dependent Loss		- 0.25		-	dB
Extinction Ratio only)	(PM fiber	- 20		-	dB
Off-Band Suppres	sion	-	- 45		dB
Polarization Mode	e Dispersion	-			ps
Return Loss	<u> </u>		-	-	dB
Optical Power Handling (CW)		-	-	500	mW
Operating Tempe	rature	0	0 20 60		° C
Storage Tempera	ture	-10	70		° C
Dimension			88 x 32 x 24 mm		

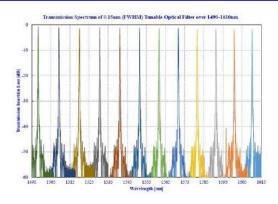
^{*} Measured using a broadband light source with the integration of the transmission peak. If the laser source does not match the filter profile, an extra loss can occur. A special filter can be made to match the application. The smaller the fiber core, the higher the loss. Excluding connector loss. The connector adds 0.25dB each

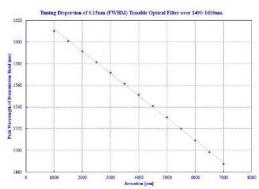
Features


- Extremely low insertion loss
- Wide Tune Range
- High off-band suppression
- Uniform bandwidth
- High tuning resolution
- Compact and costeffective

Applications

- DWDM networks
- Fiber Sensing
- ASE control
- Tunable Fiber Lasers


Manual Grating -based Fiber Optic Tunable Filter


Mechanical Dimensions (mm)

^{*}Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Spectrum

Ordering Information

				2				
Prefix	Туре	Wavelength	Power	Package	Fiber Type	Fiber Cover	Fiber Length	Connector
FOTF-	B-grade=01 A-grade=03	1060nm = 1 1310nm = 3 1550nm = 5 1600nm = 6 2000nm = 2	5W = 5 Special = 0		SMF-28 =1 PM1550=5	900um tube=3 Special=0	0.25m= 1 0.5m = 2 1.0 m= 3 Special =0	None = 1 FC/PC = 2 FC/APC = 3 SC/PC = 4 SC/APC = 5 ST/PC = 6 LC = 7 Special = 0

Manual Grating -based Fiber Optic Tunable Filter

How to test insertion loss of a tunable filter

1. Connect a broadband fiber-coupled laser source to OSA, sweep one time over the specified range of the tunable filter, then fix the curve in Trace A as reference.

***** AGILTRON

- 2. Connect the broadband laser source to the fiberoptic tunable filter fiber as input, then connect the other fiber port of the tunable filter as the output to the OSA.
- 3. Set OSA Trace B as 'write,' Trace C as 'Calculate: B-A.' Auto sweep Trace C from the specific range. Tune the micrometer to shift the peak at a different wavelength. Use 'Peak search' to record IL at a different wavelength.