SelfAlign ${ }^{\text {TM }} 1 \times \mathrm{N}$ Series Fiber Optic Switch

(all fiber type, all wavelength, Bidirectional, 20W power handling)

Applications

- Optical Signal Routing
- Network Protection
- Wavelength Management
- Signal Monitoring
- Instrumentation

Features

- Low Cost
- High Reliability
- Low Insertion Loss
- Broad Band
- Compact Design
- Low Power Switching

The SelfAlign 1 xN series Broadband Fiber Optical Switch connects optical channels using a patent-pending v-grove technology activated via an electrical control signal. The switch is a cost effective solution for sensor and spectroscopy applications. The unique design has no optical coating, offering low insertion loss and broad spectral band operation from 200 to 2000 nm with high power handling. MWIR and LWIR versions are also available. It accommodates all types of fibers including single mode and multimode with fiber core size from 50 to $1000 \mu \mathrm{~m}$. The switch is bidirectional and has a large number of ports up to 300 fibers. We have verified the switch high reliability with continuous operation for several years.
The switch is controlled by RS232 or USB computer interface with a graphic Software. Labview version is also available. A fully packaged box module is available.

Specifications

Parameter		Min	Typica	Max	Unit
Operation Wavelength	UV-VIS	200		2000	nm
	MWIR	1000		5000	
	LWIR	7000		12000	
Insertion Loss ${ }^{[1]}$			0.3	1	dB
Port Uniformity			0.3	0.6	dB
Wavelength Dependence Loss			0.15	0.2	dB
Polarization Dependent Loss			0.05	0.1	dB
Cross Talk		50	60		dB
Return Loss ${ }^{[2]}$	APC	50			dB
	UPC	40			
Switch Time				200	ms
Switch type			Latching		
Durability		10^{7}			cycle
Optical Power Handling			0.3	$5{ }^{[3]}$	W
Operating Temperature		-5		65	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40		85	${ }^{\circ} \mathrm{C}$
Fiber Type	Single Mode	Corning SMF-28 or equivalent			
	Multimode	50	100		$\mu \mathrm{m}$
Package Dimension		$192 \mathrm{~L} \mathrm{x} \mathrm{102W} \mathrm{x} \mathrm{60H}$			mm

Notes:

[1]. Measured without connectors
[2]. For SM. Larger core will reduce the value. High return index matching version is available
[3]. High power version is available

SelfAlign ${ }^{\text {TM }}$ 1xN Series Fiber Optic Switch

(all fiber type, all wavelength, Bidirectional, 20W power handling)

DATASHEET

Electronic Control Requirements

The sub-module comes with a computer control kit with USB interfaces and Windows ${ }^{\text {TM }}$ GUI. It has a wall plug-in power suppler

Parameters	Min	Typical	Max	Unit
Operating Voltage		12	13	VDC
Operating Current	100		200	mA
Power Consumption		3.6	5	W

For USB controlled version, the switch will use the RS232 port and a RS232 to USB converter cable

Mechanical Dimensions (mm)

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

SelfAlign ${ }^{\text {TM }}$ 1xN Series Fiber Optic Switch

(all fiber type, all wavelength, Bidirectional, 20W power handling)

DATASHEET

Function Diagram

SelfAlign 1xN Series Switch

SelfAlign Dual 1xN Series Switch

Ordering Information

	$\square \square \square$	\square						
Prefix	Type	Wavelength	Configuration	Package	Fiber Type	Fiber Cover	Fiber Length	Connector
LBSA-	$\begin{aligned} & 1 \times 8 \text { Switch }=008 \\ & 1 \times 9 \text { Switch }=009 \\ & 1 \times 10 \text { Switch }=010 \\ & \ldots \\ & 1 \times 128 \text { Switch }=128 \end{aligned}$	$\begin{aligned} & 1060=1 \\ & 1310=3 \\ & 1550=5 \\ & 650=6 \\ & 780=7 \\ & 850=8 \\ & 1310 / 1550=9 \\ & \text { Special }=0 \end{aligned}$	Single $=S$ Dual = D Special $=0$	$\begin{aligned} & \text { Standard = } 1 \\ & \text { Special =0 } \end{aligned}$	$\begin{aligned} & \text { 50/125 = } 5 \\ & 62.5 / 125=6 \\ & 105 / 125=E \\ & 200 / \text { NA. } 22=F \\ & 300 / \text { NA. } 22=\mathrm{G} \\ & 400 / \text { NA. } 22=\mathrm{H} \\ & 600 / \text { NA. } 22=\mathrm{J} \\ & 800 / \text { NA. } 22=\mathrm{K} \\ & \text { SM28= }{ }^{[1]} \\ & \text { SM1900 }=\mathrm{M}^{[2]} \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { Bare fiber = } 1 \\ & 2 \mathrm{~mm} \text { Jacket }=2 \\ & 900 \mu \mathrm{~m} \text { loose tube }=3 \\ & \text { Special = } 0 \end{aligned}$	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { None }=1 \\ & \text { FC/PC }=2 \\ & \text { FC/APC }=3 \\ & \text { SC/PC }=4 \\ & \text { SC/APC }=5 \\ & \text { ST/PC }=6 \\ & \text { LC } / P C=7 \\ & \text { Duplex LC/PC }=8 \\ & \text { Special }=0 \end{aligned}$

[1]. It uses 1 mm collimators covering 1230-1630nm
[2]. It uses 1 mm collimators covering 1700-2400nm
RED is Special Order

