MEMS M x M Fiber Optical Switch (Non-Blocking, Bidirectional)
(Protected by U.S. patents 7224860, 6757101, 6577430 and pending patents)
Product Description
The Agiltron MEMS Matrix M x M optical fiber switch is a leading solution to manage and monitor large optical networks intelligently and remotely, establishing optical signal paths in milliseconds. The switch system is supported by a robust software and control algorithms making the management of live traffic resilient to the effects of time, vibration and temperature. Their unique capabilities enable the dynamic selection and distribution of optical signals for analysis and storage. The passive switch is bit rate independent, supporting all date rates.
Monitoring Applications - access signals for analysis in real time without disrupting traffic.

Reconfigure Applications - select, duplicate, and distribute optical
 signals to one or many locations.
Performance Specifications

MEMS M x M Switch	Min	Typical	Max	Unit
Operation Wavelength		$1260 \sim 1650$		nm
Insertion Loss ${ }^{1}$	0.5	1	1.2	dB
Cross Talk	50			dB
Switch Speed (Rise, Fall)		5	10	ms
Durability	10^{8}			cycle
Polarization Dependent Loss		0.04	0.2	dB
Wavelength Dependence Loss ${ }^{2}$		0.1	0.3	dB
Return Loss	45			dB
Repeatability		0.3	0.5	dB
Operating Temperature ${ }^{3}$	-5		65	${ }^{\circ} \mathrm{C}$
Optical Power Handling ${ }^{4}$		300	500	mW
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$
Electrical Power Consumption		80	W	
Switch type	Non-Latching/Latching			
Package Dimension	1RU / 2RU /3RU / 4RU			
Measured without connectors Within 50nm bandwidth 2. 3. 25 ${ }^{\circ} \mathrm{C} \sim 75^{\circ} \mathrm{C}$ version is also available. High power version available				
4.				

MEMS M x M Fiber Optical Switch

Switching Module Mechanical Dimensions (mm)

The switch module is mounted inside a standard rack box with front fiberoptic connectors of customer choice and back electrical power input and control interfaces. The height of the box is determined by the port count.
*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

Electrical Specification

-RS 232/ RS 485
-Ethernet 10/100 with definable IP address
-CLI
-GUI
-Dual 48V/120-220V Power Input

- USB
- SNMPv3

Graphic Interface

Per customer request

Ordering Information

MEMS-		\square	\square	\square	\square	\square	\square
	Type	Wavelength	Switch Type	Package	Fiber Type	Power Monitor	Connector
	$8 \times 8=008$ Dual $8 \times 8=208$ $12 \times 12=012$ Dual $12 \times 12=212$ $16 \times 16=016$ $24 \times 24=024$ $32 \times 32=032$ $48 \times 48=048$ $64 \times 64=064$ $128 \times 128=128$ $144 \times 144=144$ $192 \times 192=192$ $256 \times 256=256$ Special $=000$	$\begin{aligned} & \hline 1060=1 \\ & 1310=3 \\ & 1410=4 \\ & 1550=5 \\ & 1310 / 1550=2 \\ & 650=6 \\ & 780=7 \\ & 850=8 \\ & \text { Special=0 } \end{aligned}$	Symmetric=1 Special=0	$\begin{aligned} & 1 \mathrm{RU}=1 \\ & 2 \mathrm{RU}=2 \\ & 3 \mathrm{RU}=3 \\ & 4 \mathrm{RU}=4 \\ & \text { Special=0 } \end{aligned}$	$\begin{aligned} & \text { SMF-28 =1 } \\ & \text { MM 50/125=2 } \\ & \text { MM 62.5/125=3 } \\ & \text { Panda }=5 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { Input=1 } \\ & \text { Output=2 } \\ & \text { Input/output=3 } \\ & \text { None =0 } \end{aligned}$	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC=7 Duplex LC=8 Special=0

MEMS 1x1, 1x2, ..., Dual 2x2 Fiber Optical Switch
$10{ }^{9}$ Switching Cycle Test
We have tested MEMS 1×2 switch at the resonant frequency $\sim 300 \mathrm{~Hz}$ for more than 40 days, as shown in the attachment, which corresponding over 10^{9} switching cycles. The measurements show little changes in Insertion loss, Cross Talk, Return loss ect, all parameters are within our specs.

