MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)

The MEMS FIBER Optical switches establish optical signal paths passively in milliseconds supporting all data rates, ideally suited to manage and monitor large optical networks intelligently and remotely. The MEMS switches are reliable with longevity suited for continuous operation. The control is net-based GUI that is compatible with standard network management protocols. The box height is depended on connector choice and fiber port count. The IU box front panel can house approximately 40 LC connectors (1×36).

Features

- Low Cost
- High Reliability
- Low Insertion Loss
- Broad Band
- Compact Design
- Low Voltage

Applications

- Optical Signal Routing
- Network Protection
- Wavelength Management
- Signal Monitoring
- Instrumentation

Specifications ${ }^{[1]}$

Parameters	Min	Typical	Max	Unit
Operation Wavelength	850	1270~1630		nm
Insertion Loss ${ }^{[1]}$ (SM)	0.4	0.8	2.6	dB
Insertion Loss ${ }^{[1]}$ (MM)	0.5	1	4.3	dB
Dynamic Cross Talk	50			dB
Static Cross Talk	60			dB
Switch Speed (Rise, Fall)		5	20	ms
Durability	109			cycle
Polarization Dependent Loss		0.04	0.2	dB
Wavelength Dependence Loss ${ }^{[2]}$		0.1	0.3	dB
Return Loss	$50^{[6]}$			dB
Repeatability		0.3	0.5	dB
Operating Temperature ${ }^{[3]}$	-5		65	${ }^{\circ} \mathrm{C}$
Transit Time Delay			0.2	ms
Port to Port Time Delay Difference			0.5	ns
Optical Power Handling (CW) ${ }^{[4]}$		300	500	mW
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$
Electrical Power Consumption			$50^{[5]}$	w
Switch type	Non-Latching			
Package Dimension	1RU / 2RU / 4RU			

[1]. Measured without connectors for SM only, each connector adds 0.2-0.3dB
[2]. Within 50 nm bandwidth
[3]. $-25 \mathrm{o} \mathrm{C} \sim 75 \mathrm{oC}$ version is also available.
[4]. High power version available
[5]. For the non-latching version
[6]. For SM fiber, MM fiber is 35 dB

MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)

Optical Path Illustration

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

10^{9} Switching Cycle Test

We have tested MEMS 1×2 switch at the resonant frequency $\sim 300 \mathrm{~Hz}$ for more than 40 days, as shown in the attachment, which corresponds over 10^{9} switching cycles. The measurements show little changes in Insertion loss, Cross Talk, Return loss, etc, all parameters are within our specs.

Control \& Electric Interface

The switch default control is Ethernet with a GUI.

- Physical Layer: 10/100Base-T
- Data Link Layer: Ethernet Protocol per IEEE 802.3
- Network Layer: IPv4
- Transport Layer: UDP
- Application Protocol: SNMP
- Connector Type: RJ-45
- Dual 48V/110-220V Power Input

We provide a command list for customers to write their control code, such as Python

MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)

Typical Insertion Loss vs Wavelength (1240-1630nm)

Ordering Information

	$\square \square \square$	\square	\square	\square	\square	\square	\square
Prefix	Type	Wavelength ${ }^{[1]}$	Control Interface	Package	Fiber Type	Power Supply	Connector
MEMS-	$\begin{aligned} & 1 \times 8=\text { AA8 } \\ & 1 \times 12=\text { A12 } \\ & 1 \times 16=\text { A16 } \\ & 1 \times 32=\text { A32 } \\ & 1 \times 64=\text { A64 } \\ & 1 \times 96=\text { A96 } \\ & 1 \times 128=128 \\ & \text { Special }=000 \end{aligned}$	$\begin{aligned} & 1240-1640 \mathrm{~nm}=1 \\ & 1310=3 \\ & 1410=4 \\ & 1550=5 \\ & 1310 / 1550=2 \\ & 1060=6 \\ & 850=8 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { Ethernet = 2 } \\ & \text { RS232 = 3 } \\ & \text { Special = } 0 \end{aligned}$	$\begin{aligned} & 1 \mathrm{RU}=1 \\ & 1.5 \mathrm{~V}=5 \\ & 2 \mathrm{RU}=2 \\ & 4 \mathrm{RU}=4 \\ & \text { Special = } 0 \end{aligned}$	$\begin{aligned} & \text { SMF-28 = } 1 \\ & \text { MM 50/125 = } 2 \\ & \text { Hi1060 }=3 \\ & \text { Panda }=5^{[2]} \\ & 780 H P=8 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & 110-220 \mathrm{~V}=4 \\ & 48 \mathrm{~V}=5 \end{aligned}$	$\begin{aligned} & \mathrm{FC} / \mathrm{PC}=2 \\ & \mathrm{FC} / \mathrm{APC}=3 \\ & \mathrm{SC} / \mathrm{PC}=4 \\ & \mathrm{SC} / \mathrm{APC}=5 \\ & \mathrm{ST} / \mathrm{PC}=6 \\ & \mathrm{LC}=7 \\ & \text { Duplex LC }=8 \\ & \text { Special }=0 \end{aligned}$

[1]. Measured wavelength. The device has a wider wavelength coverage. Customer can request to measure at several wavelengths.
[2]. For PM fiber version, please call us to get more information.

MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)

Example of RS232 Remote Control GUI

RS232 Command List (1x196 example) (start)

```
##### COM SET #####
UART Control Setting
Baud Rate: 115200
Start Bits: 1
Data Bits: 8
Parity: None
Stop Bits: 1
Flow Control: None
```


MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)
RS232 Command List (1x196 example) (ending)
\#\#\#\#\# 1, Command Format \#\#\#\#\#
1.1 Command

FLAG	LEN	RES	CMD	DATA	SUM
2 Byte	1 Byte	1 Byte	1 Byte	0-N Byte	1 Byte
FLAG: $0 x E F E F$ or $0 \times A A A A$					
LEN: Total number of bytes from RES to SUM					
SUM: Checksum, SUM=FLAG+LEN+RES+CMD+DATA					
1.2 Response					
FLAG	LEN	RES	RESP	DATA	SUM
2 Byte	1 Byte	1 Byte	1 Byte	0-N Byte	1 Byte

FLAG: 0xEDFA
LEN: Total number of bytes from RES to SUM
RES: 0xFF
RES: 0xFF
SUM: Checksum, SUM=FLAG+LEN+RES+ RESP+DATA
\#\#\#\#\# 2, Command List \#\#\#\#\#
2.1 Set Channel
Command
FLAG1 LE
LAG1 REN RES
0×0
$0 \times F F$
CMD
DATA

SUM
0xEFEF 0×04
$0 \times F F$
0×04
1 byte
SUM
Response
FLAG2 LEN
xFDFA
RES
RESP
DATA
SUM
DATA Result
0 xFF
0×04
1 byte
SUM
Result $=0 x E E$ Success
Result $=0 x E F$ Fail

Example (Set Channel=180):
Command
EF EF 04 FF 04 B4 99
Response
ED FA 04 FF 04 EE DC
2.2 Get Channel

Command

FLAG1 LE
0xEFEF 0x03
Response
$\begin{array}{ll}\text { FLAG2 } & \text { LEN } \\ \text { 0xEDFA } & 0 \times 04\end{array}$
DATA $=$ Channel

RES	CMD
$0 \times F F$	0×02
RES	RESP
$0 \times F F$	0×02

DATA	SUM
1 byte	SUM
DATA	SUM
1 byte	SUM

Example (Get Channel=0):
Command
EF EF 03 FF 02 E2
Response
ED FA 04 FF 0200 EC

MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)

Example of Ethernet Remote Control GUI

Ethernet Command List For Telnet/Python Control

Login:

1, Use the Windows Command Prompt,
2, telnet 192.168.1.200 or the current IP address
3, Username: root
4, Password: fs19681086

Command List
1, Request Switch Status:
CARD - C xx B ?
$x x$ is the slō number of card. For example, to show the status of the card in slot 2 :
[FT@\h \W] \# CARD -c 02 B_?
Show Card Info:

$=====$	CARD Monitor Info $=====$	
Chan	MaxRoute	CurrRoute
1	64	64

$=====$					
Type	CARD Basic Info $=====$		MadeDate	DevType	SoftVer
OSW64	Slot	SordVer	1.02 .01	$2021 / 10 / 22$	MOSW64-DEV

[FT@ \h \W] \#
2, Set Switch status:
CARD -c xx S01_y
$x x$ is the slot number of the card.
01 is the input channel number of the switch, for $1 x N$ products this is fixed.
y is the output channel number of the switch, for a 1×64 switch it's 1~64.
Return value: Success means operation succeed, Fail means operation failed.

MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)

Ethernet Command List For Telnet/Python Control

(ending)
For example,:
1> Set the input \#1 to output \#1:
[FT@\h \W]\# CARD -c 02 S01_1
Send: S01_1
Return: Operation Success
[FT@ \h \W] \#
2> Set the input \#1 to output \#64
[FT@\h \W]\# CARD -c 02 S01_64
Send: S01_64
Return: Operation Success
[FT@ \h \W] \#
3> Request the current status:
[FT@ \h \W] \# CARD -c 02 B_?
Show Card Info:
===== CARD Monitor Info =====

MEMS 1xN Fiber Optical Switch

(N Up to 196 Ports, Non-Blocking, Bidirectional, Passive)

Questions and Answers

Q: If the device were to fail, would the switch continue to pass the fiber light through the switch as configured before failure?
A: This depends, if one mirror fails, it only affects the light going through that mirror.
Q: When power is restored, does the IN/OUT configuration before failure remain in place?
A: Yes, when power back up it will go to the previous flightpath
Q: If the power to the device were shut off, would the device continue to pass the fiber light as configured before failure?
A: This function is called latching. We uniquely offer MEMS latching switches but cost more.
Q: With the Ethernet Control Option, does the switch support SNMPv3
A: Yes. This internet standard protocol allows user to write their own control code
Q: With the Ethernet Control Option, what type of encryption does the SNMPv3 use?
A: MD5/DES
Q: With the Ethernet Control Option, could this device be controlled by multiple users at different locations and all users will also see the configuration updates?
A: Yes
Q: With the Ethernet Control Option, does the user need to install any software on their computer other than a web browser?
A: No

Laser Safety

This product meets the appropriate standard in Title 21 of the Code of Federal Regulations (CFR). FDA/CDRH Class 1 M laser product. This device has been classified with the FDA/CDRH under accession number 0220191. All versions of this laser are Class 1M laser products, tested according to IEC 60825-1:2007 / EN 60825-1:2007. An additional warning for Class 1 M laser products. For diverging beams, this warning shall state that viewing the laser output with certain optical instruments (for example eye loupes, magnifiers, and microscopes) within a distance of 100 mm may pose an eye hazard. For collimated beams, this warning shall state that viewing the laser output with certain instruments designed for use at a distance (for example telescopes and binoculars) may pose an eye hazard.

Wavelength $=1.3 / 1.5 \mu \mathrm{~m}$.
Maximum power $=30 \mathrm{~mW}$.

[^0]
[^0]: *Caution - Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.
 *IEC is a registered trademark of the International Electrotechnical Commission.

