NanoSpeedTM Premium 1x1, 1x2, 2X2 Fiber Optical Switch
(1MHz)
(Protected by U.S. patents $7,403,677 \mathrm{~B} 1 ; 6,757,101 \mathrm{~B} 2$; and pending patents)

Product Description
The NS Premium Series solid-state fiber optic switch connects optical channels by redirecting an incoming optical signal into a selected output optical fiber at high speed. This is achieved using patented electro-optical configuration featuring clean fast response without ripples. The NS fiber optic switch is designed to meet the most demanding switching requirements of continuous operations over 25 years and non-mechanical ultra-high reliability.
The NSP Series switch is controlled by 5 V TTL signals with a specially designed electronic driver having performance optimized for various repetition rate.

Performance Specifications

NanoSpeed P Series Switch	Min	Typical	Max	Unit
Wavelength Band $\frac{1260 \sim 1650 \mathrm{~nm}}{960-1260 \mathrm{~mm}}$		0.8	1.2	dB
Wavelength Band $960 \sim 1260 \mathrm{~nm}$		1.0	1.3	dB
Insertion Loss ${ }^{[1]}$ 780~960nm		1.2	1.5	dB
$520 \sim 680 \mathrm{~nm}$		1.5	2	dB
Cross Talk ${ }^{[2]}$	18	25	35	dB
PDL (SMF Switch only)		0.15	0.3	dB
ER (PMF Switch only)	18	25		dB
IL Temperature Dependency		0.25	0.5	dB
Return Loss	45	50	60	dB
Response Time (Rise, Fall)			90	ns
Fiber Type	SMF-28, Panda PM, or equivalent			
Driver Repeat Rate	DC	10		kHz
	DC	200		kHz
	DC	1000		kHz
Optic power Handling ${ }^{[3]}$		300		mW
Operating Temperature	-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40		85	${ }^{\circ} \mathrm{C}$

[1] Measured without connectors. For other wavelength, please contact us.
[2] Cross talk is related to repetition rate, the low value measured at 500 kHz .
[3] Defined at $1310 \mathrm{~nm} / 1550 \mathrm{~nm}$. For the shorter wavelength, the handling power may be reduced, please contact us for more information.

NanoSpeed ${ }^{\text {TM }}$ Premium 1x1, 1x2, 2X2 Fiber Optical Switch

Mechanical Dimensions (Unit: mm)

Optical Path Driving Table

Optical Path	TL Signal
Port 1 \rightarrow Port 3, Port 2 \rightarrow Port 4	L $(<0.8 \mathrm{~V})$
Port 1 \rightarrow Port 4, Port 2 \rightarrow Port 3	$\mathrm{H}(>3.5 \mathrm{~V})$

Driving Board Selection

Maximum Repetition Rate	Part Number (P/N)
200 kHz	SWDR-11a2M1111
1000 kHz	SWDR-11a2H1111

* Note: For customers that prefer to design their owen driving circuit, they are responsible for the optical performance. For more technical information, please contact us.

NanoSpeed ${ }^{\text {TM }}$ Premium 1x1, 1x2, 2X2 Fiber Optical Switch

Typical Speed and Repetition Measurement

1MHz Response

1MHz Response

Note: Top Traces are electrical; Bottom traces are optical

Typical Bandwidth Measurement

Ordering Information

NPSW-	\square	\square	1	2	\square	\square	\square	\square
	Type	Wavelength	Configuration	Repetition Rate	Fiber Type		Fiber Length	Connector
	$\begin{aligned} & 1 \times 1=11 \\ & 1 \times 2=12 \\ & 2 \times 2=22 \end{aligned}$	$\begin{aligned} & 1060=1 \\ & 2000=2 \\ & 1310=3 \\ & 1480=4 \\ & 1550=5 \\ & 1625=6 \\ & 780=7 \\ & 850=8 \\ & 650=E \\ & 1565 \sim 1620=\text { L } \\ & \text { Special }=0 \end{aligned}$	Single Stage=1	$\begin{aligned} & 500 \mathrm{kHz}=1 \\ & 1 \mathrm{MHz}=2 \end{aligned}$	$\begin{aligned} & \text { SMF-28=1 } \\ & \text { HI1060 }=2 \\ & \text { HI780 }=3 \\ & \text { PM1550/400 }=4 \\ & \text { PM1550/250 }=5 \\ & \text { PM850 }=8 \\ & \text { PM980 }=9 \\ & \text { Special }=0 \end{aligned}$	Bare fiber=1 900um loose tube=3 Special=0	$\begin{aligned} & 0.25 m=1 \\ & 0.5 m=2 \\ & 1.0 m=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/PC=2 $\mathrm{FC} / \mathrm{APC}=3$ SC/PC=4 SC/APC=5 ST/PC=6 LC/PC=7 LC/APC=8 Special=0

