

Features

- Solid-State
- High on-off ratio
- High speed
- Ultra-high reliability
- Low insertion loss
- Compact

Applications

- Optical blocking
- Configurable operation
- Instrumentation

The NanoSpeed ${ }^{\text {TM }}$ Series 1×2 solid-state fiber optic switch connects optical channels by redirecting an incoming optical signal into a selected output optical fiber. This is achieved using patent non-mechanical configurations with solid-state all-crystal designs, which eliminates the need for mechanical movement and organic materials. The device is intrinsic bidirectional and has variable coupler behavior in which light is transferred from one to another port without loss. The NS fiber optic switch is designed to meet the most demanding switching requirements of ultra-high reliability, fast response time, and continuous switching operation. The switch is intrinsically bidirectional and selectable for polarization-independent or polarization-maintain by the fiber type.
The NS Series switch is controlled by 5V TTL signals with a specially designed electronic driver having performance optimized for various repetition rate.
The rise/fall time is intrinsically related to the crystal properties, and the repetition rate is associated with the driver. There are poor frequency response sections due to the device resonances. The NS devices are shipped mounted on a tuned driver.

Specifications

Parameter		Min	Typical	Max	Unit
Central Wavelength ${ }^{[1]}$		860		2000	nm
Insertion Loss ${ }^{[2]}$	1900 ~ 2100 nm		0.9	1.5	dB
	1260~1650nm		0.6	1.0	dB
	860~1100nm		0.8	1.3	dB
Cross Talk ${ }^{[3]}$		18	25	35	dB
Durability		10^{14}			cycles
PDL (SMF Switch only)			0.15	0.3	dB
PMD (SMF Switch only)			0.1	0.3	ps
ER (PMF Switch only)		18	25		dB
IL Temperature Dependency			0.25	0.5	dB
Return Loss		45	50	60	dB
Response Time (Rise, Fall)				300	ns
Fiber Type		SMF-28, Panda PM, or equivalent			
Driver Repeat Rate	100 kHz driver	DC	100		kHz
	300 kHz driver	DC	300		kHz
Optic power Handling ${ }^{[4]}$	Normal power switches		300		mW
	High power switches			5	W
Operating Temperature		-5		70	${ }^{\circ} \mathrm{C}$
Storage Temperature		-40		85	${ }^{\circ} \mathrm{C}$

Note:
[1] Operation bandwidth is $\pm 25 \mathrm{~nm}$ approximately at 1550 nm .
[2] Measured without connectors. For other wavelength, please contact us.
[3] $\pm 25 \mathrm{~nm}$, Cross talk is measured at 100 kHz , which may be degraded at the high repeat rate.
[4] Defined at $1310 \mathrm{~nm} / 1550 \mathrm{~nm}$. For the shorter wavelength, the handling power may be reduced, please contact us for more information.

[^0]
NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series
 Fiber Optical Switch

(SMF, PMF, High Power, Bidirectional)

DATASHEET

Mechanical Dimensions (mm)

Normal power version

High power (>=2W) version

*Product dimensions may change without notice. This is sometimes required for non-standard specifications.

NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series
 Fiber Optical Switch

(SMF, PMF, High Power, Bidirectional)

DATASHEET

Mechanical Dimensions, mounting on 100KHz driver (mm)

NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series Fiber Optical Switch

(SMF, PMF, High Power, Bidirectional)

DATASHEET

Optical Path Driving Table

Optical Path	Pin 1	Pin 2	
Port 1 \rightarrow Port 2	No Power		
Port $1 \rightarrow$ Port 3	H	GND	
H: $360 \sim 420 \mathrm{~V}$			

Driving Board Selection

Maximum Repetition Rate	Part Number (P/N)
60 kHz	NSDR-2s1a61111
300 kHz	NSDR-2s1a91111

* Note: For customers that prefer to design their owen driving circuit, they are responsible for the optical performance. For more technical information, please contact us.

Typical Speed Response Measurement

Bandwidth Measurement

NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series
 Fiber Optical Switch

DATASHEET

Ordering Information

	12	\square	1	\square	\square	\square	\square	\square
Prefix	Type	Wavelength ${ }^{[4]}$	Configuration	Package	Fiber Type	Fiber Cover	Fiber Length	Connector ${ }^{[5]}$
NSSW- ${ }^{[1]}$ NHSW. ${ }^{[2]}$ NHHW- ${ }^{[3]}$	$1 \times 2=12$	$\begin{aligned} & 1060 \mathrm{~nm}=1 \\ & 2000 \mathrm{~nm}=2 \\ & 1310 \mathrm{~nm}=3 \\ & 1410 \mathrm{~nm}=4 \\ & 1550 \mathrm{~nm}=5 \\ & 980 \mathrm{~nm}=9 \\ & 780 \mathrm{~nm}=7 \\ & \text { Special }=0 \end{aligned}$	Single stage = 1	$\begin{aligned} & \text { Standard }=1 \\ & \text { For high power }{ }^{[6]}=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { SMF-28 }=1 \\ & \text { HI1060 }=2 \\ & \text { PM1550 }=5 \\ & \text { PM980 }=9 \\ & \text { PM850 }=8 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & \text { Bare Fiber }=1 \\ & 900 \text { um Tube }=3 \\ & \text { Special }=0 \end{aligned}$	$\begin{aligned} & 0.25 \mathrm{~m}=1 \\ & 0.5 \mathrm{~m}=2 \\ & 1.0 \mathrm{~m}=3 \\ & \text { Special }=0 \end{aligned}$	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC/PC=7 Duplex LC=8 LC/APC=9 E2000 APC=A Special=0

[1]. NSSW - Normal power version
[2]. NHSW - 2 W version
[3]. NHHW - 5W version
[4]. For shorter wavelength, please refer to Premium NS switches. Wavelength $>1900 \mathrm{~nm}$ will be implemented in the special version with long lead time
[5]. Please contact us for high power connectors
[6]. 3-cap package for high power
NOTE:

- PM1550 fiber works well for 1310 nm

Optical Power Handling vs Wavelength For Single-Mode Fibers

NanoSpeed ${ }^{\text {TM }} 1 \times 2$ Series Fiber Optical Switch

DATASHEET

Q \& A

Q: Does NS device drift over time and temperature?
A: NS devices are based on electro-optical crystal materials that can be influenced to a certain range by the environmental variations. The insertion loss of the device is only affected by the thermal expansion induced miss-alignment. For extended temperature operation, we offer special packaging to $-40-100{ }^{\circ} \mathrm{C}$. The extinction or cross-talk value is affected by many EO material characters, including temperature-dependent birefringence, Vp , temperature gradient, optical power, at resonance points (electronic). However, the devices are designed to meet the minimum extinction/cross-talk stated on the spec sheets. It is important to avoid a temperature gradient along the device length.

Q: What is the actual applying voltage on the device?
A: 100 to 400 V depending on the version.
Q: How does the device work?
A: NS devices are not based on Mach-Zander Interference, rather birefringence crystal's nature beam displacement, in which the crystal creates two different paths for beams with different polarization orientations.

Q: What is the limitation for faster operation?
A: NS devices have been tested to have an optical response of about 300 ps . However, practical implementation limits the response speeds. It is possible to achieve a much faster response when operated at partial extinction value. We also offer resonance devices over 20 MHz with low electrical power consumption.

Operation Manual

1. Connect a control signal to the SMA connector on the PCB.
2. Attach the accompanied power supply (typically a wall-pluggable unit).
3. The device should then function properly.

Note: Do not alter device factory settings.

[^0]: Legal notices: All product information is believed to be accurate and is subject to change without notice. Information contained herein shall legally bind Agiltron only if it is specifically incorporated into the terms and conditions of a sales agreement. Some specific combinations of options may not be available. The user assumes all risks and liability whatsoever in connection with the use of a product or its application.
 Rev 06/12/23

