Features

- SMPTE 424M/297M compliant
- SMPTE 292M/259M/297M compatiable.
- Robust error free transmission of signals from 50Mbps to 3Gbps with up to 2km single-mode fiber

VER0.3/06-12-2016

- Maximum distance of 2km under worst-case conditions and 3Gbps video pathological signals
- Supports video pathological patterns for SD-SDI, HD-SDI and 3G-SDI
- SFP Package.Hot-pluggable
- Metal enclosure for lower EMI
- +3.3V single power supply.
- Low Power Consumption— typical 500mW
- Laser disable pin
- Digital diagnostics and control via I²C interface, including:
 - Monitoring laser bias current, average output power, receive optical power, supply voltage and temperature
 - Alarm reporting when transceiver is at fault
 - Module ID polling
- Compliant ROHS and lead free

Applications

SMPTE 297-2006 compatible optical-to-electrical interfaces

Descriptions

The CSP13F6-11-SDI is a single channel optical transceiver module designed to transmit and receive optical serial digital signals as defined in SMPTE 297-2006. The CSP13F6-11-SDI is specifically designed for robust performance in the presence of SDI pathological patterns for SMPTE 259M, SMPTE 344M, SMPTE 292M and SMPTE 424M serial rates.

Ordering Information

Part Number	Package	Temperature Range				
CSP13F6-11-SDI	SFP	0°C to 70°C				

Functional Block Diagram

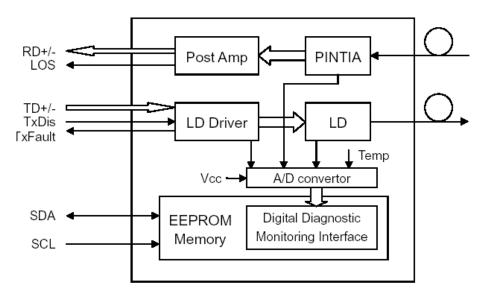
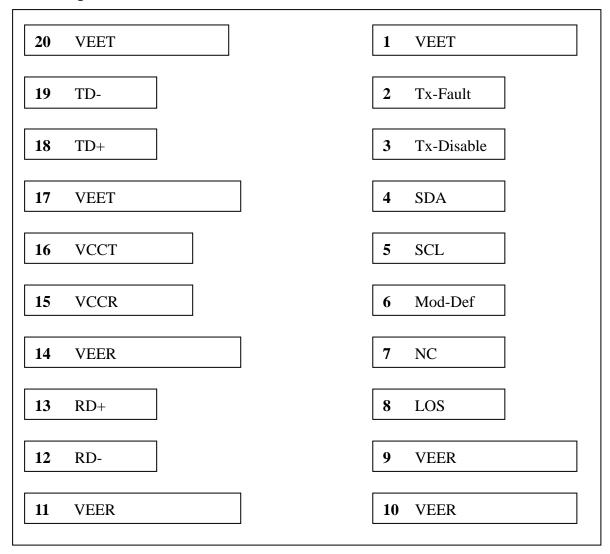



Figure 1: CSP13F6-11-SDI Functional Block Diagram

Pin Description

Pin Out Diagram

1310nm Video SFP Optical Transceiver

CSP13F6-11-SDI

Pin Function Definitions

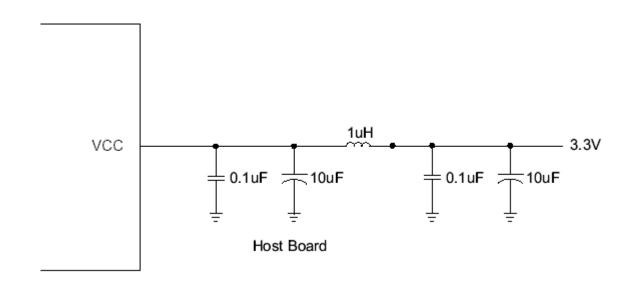
Pin#	Name	Description	Notes
1	VEET	Transmitter Ground	-
2	TX-Fault	Transmitter Fault Indication	Note 1
3	TX-Disable	Transmitter Disable	Note 2, Module disables on high or open
4	SDA	I ² C Data	Note 3
5	SCL	I ² C Clock	Note 3
6	Mod-Def	Module present indicate	Note 3, Grounded in Module
7	NC	No Connection	-
8	LOS	Los of signal	Note 4
9	VEER	Receiver Ground	-
10	VEER	Receiver Ground	-
11	VEER	Receiver Ground	-
12	RD-	Inv. Received Data Out	Note 5
13	RD+	Receiver Data out	Note 5
14	VEER	Receiver Ground	-
15	VCCR	Receiver Power	Note 6, 3.3V± 5%
16	VCCT	Transmitter Power	Note 6, 3.3V± 5%
17	VEET	Transmitter Ground	-
18	TD+	Transmit Data In	Note 7
19	TD-	Inv. Transmit Data In	Note 7
20	VEET	Transmitter Ground	-

Note:

- 1. TX-Fault is an open collector/drain output, which should be pulled up with a 4.7K–10K Ω resistor on the host board. Pull up voltage between 2.0V and VCC+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 2. TX-disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7–10 K Ω resistor. Its states are:

Low (0 – 0.8V): Transmitter on

(>0.8, < 2.0V): Undefined


High (2.0 – 3.465V): Transmitter Disabled

Open: Transmitter Disabled

3. These pins should be pulled up with a 4.7K – 10K $\Omega\,$ resistor on the host board. The

pull-up voltage shall be VCCT or VCCR. Mod-Def is grounded by the module to indicate that the module is present .

- 4. LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K – 10K Ω resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity(as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.</p>
- 5. RD-/+: These are the differential receiver outputs. They are AC coupled 100 Ω differential lines which should be terminated with 100 Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board.
- 6. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP input pin with3.3V supply voltage. When the recommended supply filtering network is used, hotplugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value.
- 7. TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board.

Recommended Host Board Supply Filtering

Figure 2: Recommended Host Board Supply Filtering

Optical Connector Requirements

An LC connector with PC/UPC polish is required for each port.

Performance Specifications

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Tst	-40	+85	°C
Operating case Temperature	Tcase	-20	+85	°C
Input Voltage	-	GND	VCC	V
Power Supply Voltage	VCC-VEE	-0.5	+3.6	V

Operating Environment

Parameter	Symbol	Min.	Max.	Unit
Power Supply Voltage	VCC	+3.1	+3.5	V
Operating Temperature	То	0	+70	°C

Transmitter E-O characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Bit Rate	BR	50	-	3000	Mbps	-
Center Wavelength	λ	1290	1310	1330	nm	-
Spectral Width (RMS)	Δλ	-	-	3	nm	-
Average Optical Output Power	Ро	-7	-3	0	dBm	-
Extinction Ratio	ER	5	-	-	dB	-
Power Supply Current	ICC	-	80	120	mA	-
Transmitter Enable Voltage	Ven	0	-	0.8	-	-
Transmitter disable Voltage	VD	2.0	-	VCC	V	-
Data Inputs Voltage	VPP	300	800	1600	mV	-
	Tr	-	105	165	ps	SMPTE 424M
						2.97Gbps
Optical Piso Time (20% 90%)		-	170	270	ps	SMPTE 292M
Optical Rise Time (20%~80%)						1.485Gbps
		-	300	800	ps	SMPTE 259M
						270Mbps

1310nm Video SFP Optical Transceiver

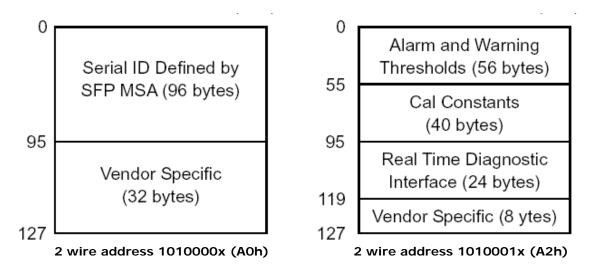
CSP13F6-11-SDI

	Tf	-	120	180	ps	SMPTE 424M
						2.97Gbps
Optical Fall Time (80%~20%)		-	170	270	Ps	SMPTE 292M
						1.485Gbps
		-	300	800	ps	SMPTE 259M
						270Mbps
		-	45	70	ps	SMPTE 424M
Optical Signal Intrinsic Jitter	-					2.97Gbps
		-	60	100	ps	SMPTE 292M
						1.485Gbps
		-	110	180	ps	SMPTE 259M
						270Mbps

Receiver O-E characteristics

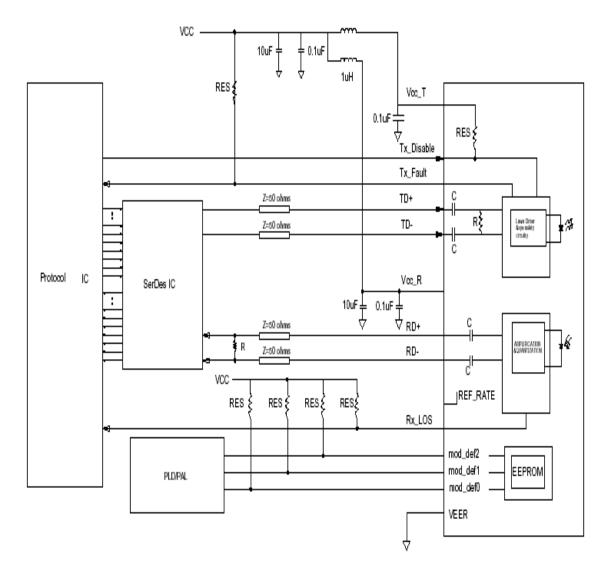
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Bit Rate	BR	50	-	3000	Mbps	-
Wavelength	λ	1260	-	1620	nm	-
Saturation	Ps	-6	-	-	dBm	-
LOS Asserted	-	-35	-	-	dBm	-
LOS De-Assert	-	-	-	-20	dBm	-
LOS Hysteresis	-	-	3	-	dB	-
LOS LOW voltage	VLout	-	-	0.8	V	-
LOS HIGH voltage	VHout	2.0	-	-	V	-
Sensitivity for SMPTE 259M	-	-	-22	-20	dBm	Pathological
270Mbps		-	-24	-22	dBm	PRBS
Sensitivity for SMPTE 292M	-	-	-22	-20	dBm	Pathological
1.485Gbps		-	-24	-22	dBm	PRBS
Sensitivity for SMPTE 424M		-	-19	-18	dBm	Pathological
2.97Gbps	-	-	-21	-20	dBm	PRBS
Power Supply Current	ICC	-	60	100	mA	
Data Outputs Voltage	Vpp	400	660	1000	mV	-
Input Power Monitoring Accuracy		-2		+2	dB	-

Note: The sensitivity specification refers to the input power levels for BER = 1E-12 against PRBS $2^{2}-1$.

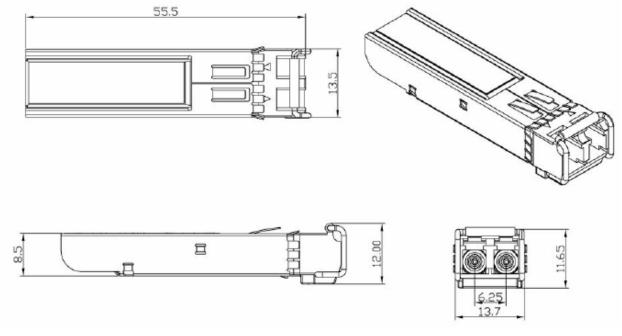


EEPROM Section

The optical transceiver contains an EEPROM. It provides access to sophisticated identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C01A/02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not write protected within the SFP transceiver. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.


The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. The diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following.

Memory Map:


Recommended Circuit

Package information

Unit: mm

For More Information

Shenzhen Transwan Optoelectronic Technology co., Ltd Add: 5F B Building, Zhi Xuan Han YuanLing Industrial Park, Shi Yan, Bao'an, Shenzhen, P.R.C Tel: +86-755-29003393, Fax: +86-755-22715122 E-mail: sales@transwan.com.cn website: www.transwan.com.cn